Advertisements
Advertisements
प्रश्न
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that tan θ = `"𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟"/" 𝐵𝑎𝑠𝑒"=(AB)/(BC) = 15/8`
So, if BC = 8k, then AB = 15k where k is positive number.
Now, using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2 = (15K)^2 + (8K)^2`
`⟹ AC^2 = 225K^2 + 64^2 = 289^2`
⟹ AC = 17k
Now, finding the other T-ratios using their definitions, we get:
Sin 𝜃 = `(AB)/(AC) = (15 K)/(17K) = 15/17`
Cos θ = `(BC)/(AC) = (8K)/(17K) = 8/17`
∴ cot 𝜃 = `1/(tan θ ) = 8/15 , cosec θ = 1/(sin θ ) = 17/15 and sec θ = 1/(cos θ ) = 17/8`
APPEARS IN
संबंधित प्रश्न
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If cos θ = `7/25` find the value of all T-ratios of θ .
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosec C = `sqrt(10)`
If sin A = `(7)/(25)`, find the value of : cot2A - cosec2A