Advertisements
Advertisements
प्रश्न
If cos θ = `7/25` find the value of all T-ratios of θ .
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃.
Now, we know that cos 𝜃 = `"𝐵𝑎𝑠𝑒" /"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠" = (BC)/(AC) = 7/25`
So, if BC = 7k, then AC = 25k, were k is a positive number.
Now, using Pythagoras theorem, we have:
`AC^2= AB^2 + BC^2`
`⟹ AB^2 = AC^2 − BC^2 = (25K)^2 − (7K)^2`
`⟹ AB^2 = 625K^2 − 49K^2 = 576^2`
⟹ AB = 24k
Now, finding the trigonometric ratios using their definitions, we get:
Sin 𝜃 =` (AB)/(AC) = (24K)/(25K) = 24/25`
Sin 𝜃 =`(AB)/(BC) = (24K)/(7K) = 24/7`
∴ cot 𝜃 = `1/ (tan θ) = 7/24 , cosec θ = 1/(sin θ) = 25/24 and sec θ = 1/ (cos θ) = 25/7`
APPEARS IN
संबंधित प्रश्न
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
In the given figure;
BC = 15 cm and sin B = `(4)/(5)`
- Calculate the measure of AB and AC.
- Now, if tan ∠ADC = 1; calculate the measures of CD and AD.
Also, show that: tan2B - `1/cos^2 "B" = – 1 .`
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A