Advertisements
Advertisements
प्रश्न
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
उत्तर
In ΔABC,
BC2 = AB2 + AC2
⇒ BC = `sqrt("AB"^2 + "AC"^2)`
⇒ BC = `sqrt(5^2 + 12^2)`
= `sqrt(169)`
= 13
AC = 12 units
BC = 13units
AB = 5units
Sin B
= `"Perpndicular"/"Hypoenuse"`
= `"AC"/"BC"`
= `(12)/(13)`
and
cos B
= `"Base"/"Hypotenuse"`
= `"AB"/"BC"`
= `(5)/(13)`.
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tan C = `(5)/(12)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
From the given figure, find the values of tan C