Advertisements
Advertisements
प्रश्न
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
उत्तर
Consider the diagram below :
4 cot A = 3
cot A = `(3)/(4)`
i.e.`"base"/"perpendicular" = (3)/(4) ⇒ "AB"/"BC" =(3)/(4)`
Therefore if length of AB = 3x, length of BC = 4x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
∴ AC = 5x ...( hypotenuse )
(i) sin A = `"perpendicular"/"hypotenuse " = (4x)/(5x) = (4)/(5)`
(ii) sec A = `"hypotenuse"/"base" = "AC"/"AB" = (5x)/(3x) = 5/3`
(iii) cosec A = `"hypotenuse"/"perpendicular" = "AC"/"BC" = (5x)/(4x) = (5)/(4)`
cot A = `(3)/(4)`
cosec2 A – cot2 A
=`(5/4)^2 – (3/4)^2`
= `( 25 - 9)/(16)`
= `(16)/(16)`
= 1
APPEARS IN
संबंधित प्रश्न
If A = 30° and B = 60°, verify that cos (A + B) = cos A cos B − sin A sin B
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ