Advertisements
Advertisements
प्रश्न
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
उत्तर
Consider the diagram below :
4 cot A = 3
cot A = `(3)/(4)`
i.e.`"base"/"perpendicular" = (3)/(4) ⇒ "AB"/"BC" =(3)/(4)`
Therefore if length of AB = 3x, length of BC = 4x
Since
AB2 + BC2 = AC2 ...[ Using Pythagoras Theorem ]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2 = 25x2
∴ AC = 5x ...( hypotenuse )
(i) sin A = `"perpendicular"/"hypotenuse " = (4x)/(5x) = (4)/(5)`
(ii) sec A = `"hypotenuse"/"base" = "AC"/"AB" = (5x)/(3x) = 5/3`
(iii) cosec A = `"hypotenuse"/"perpendicular" = "AC"/"BC" = (5x)/(4x) = (5)/(4)`
cot A = `(3)/(4)`
cosec2 A – cot2 A
=`(5/4)^2 – (3/4)^2`
= `( 25 - 9)/(16)`
= `(16)/(16)`
= 1
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
If tan = 0.75, find the other trigonometric ratios for A.
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR