Advertisements
Advertisements
प्रश्न
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
उत्तर
cosB = `"Base"/"Hypotenuse" = "BC"/"AB"`
(AB)2 = (AC)2 + (BC)2
⇒ AC = `sqrt(("AB")^2 - ("BC")^2`
⇒ AC = `sqrt(3^2 - 1)`
= `sqrt(9 - 1)`
= `2sqrt(2)`
sin A = `"BC"/"AB" = "Perpendicular"/"Hypotenuse" = (1)/(3)`
tan B = `"AC"/"BC" = "Perpendicular"/"Base" = 2sqrt(2)`
cot A = `(1)/"tan A" = "BAse"/"Perpendicular" = "AC"/"BC" = 2sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
If tan θ = `1/sqrt(7) `show that ` (cosec ^2 θ - sec^2 θ)/(cosec^2 θ + sec^2 θ ) = 3/4`
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
`(cos 28°)/(sin 62°)` = ?
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅