हिंदी

If 3 cot A = 4, Check whether AA(1-tan2A1+tan2A)=cos2A-sin2A or not. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.

योग

उत्तर १

It is given that 3cot A = 4 or cot A = `4/3`

Consider a right triangle ABC, right-angled at point B.

cot A =` ("Side adjacent to ∠A")/("Side opposite to ∠A")`

`("AB")/("BC") =  4/3`

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ΔABC,

(AC)2 = (AB)2 + (BC)2

= (4k)2 + (3k)2

= 16k2 + 9k2

= 25k2

AC = 5k

cos A = `("Side adjacent to ∠A")/"Hypotenuse" = ("AB")/("AC")`

= `(4k)/(5k)`

= `4/5`

sin A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AC")`

= `(3k)/(5k)`

= `3/5`

tan A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AB")`

= `(3k)/(4k)`

= `3/4`

`(1-tan^2 A)/(1+tan^2 A) = ((1 - (3/4)^2)/(1+(3/4)^2))`

= `((1-9/16)/(1+9/16))`

= `(7/16)/(25/16)`

= `7/25`

`cos^2 A + sin^2 A = (4/5)^2 - (3/5)^2`

= `16/25 - 9/25`

= `7/25`

∴ `(1-tan^2A)/(1+tan^2 A)= cos^2A - sin^2A`

shaalaa.com

उत्तर २

3 cot A = 4, check = `(1 - tan^2 A)/(1 + tan^2 A) = cos^2 A - sin^2 A`

cot A = `"adjacent side"/"opposite side" = 4/3`

Let x be the hypotenuse

By Applying Pythagoras theorem

AC2 = AB2 + BC2

x2 = 42 + 32

x2 = 252

x = 5

tan A = `1/(cos^2 A)` = `3/4`

cos A = `"adjacent side"/"hypotenuse" = 4/5`

sin A = `3/5`

L.H.S = `(1 - tan^2 A)/(1 + tan^2 A)`

= `(1 - (3/4)^2)/(1 + (3/4)^2)`

= `((16 - 9)/16)/((16 + 9)/16)`

= `7/25`

R.H.S cos2A - sin2 A = `(4/5)^2 - (3/5)^2`

= `(16 - 9)/25`

= `7/25`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.1 | Q 8 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
अध्याय 10 Trigonometric Ratios
Exercise 10.1 | Q 8 | पृष्ठ २४

संबंधित प्रश्न

if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`


If 8 tan A = 15, find sin A – cos A.


If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.


If A and B are acute angles such that tan A = 1/2,  tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?


If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.


If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .


If cos θ=0.6 show that (5sin θ -3tan θ) = 0


In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C


In ΔABC , ∠C = 90°  ∠ABC = θ°   BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`


If a right ΔABC , right-angled at B, if tan A=1 then verify that 2sin A . cos A = 1


If A = 450, verify that :
(i) sin 2A = 2 sin A cos A


Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2` 


From the following figure, find the values of :
(i) sin A
(ii) sec A
(iii) cos2 A + sin2A


In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B 
(ii) tan C
(iii) sin2 B + cos2
(iv) tan C - cot B


In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.


In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

cos A = `(7)/(25)`


In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB


If sinA = 0.8, find the other trigonometric ratios for A.


In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos C


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×