Advertisements
Advertisements
प्रश्न
If sin 3θ = cos (θ – 6°) where 3θ and θ − 6° are acute angles, find the value of θ.
उत्तर
3θ, θ – 6 are an acute angle
We know that sin (90 – θ) = cos θ
sin 3θ = sin (90 – (θ - 6°))
sin 3θ = sin(90 – θ + 6°)
sin 3θ = sin (96° - θ)
3θ = 96° – θ
4θ = 96°
`θ = 96^@/4`
`θ = 24^@`
APPEARS IN
संबंधित प्रश्न
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If 3 cot θ 4 , show that`((1-tan^2theta))/((1+tan^2theta)) = (cos^2theta - sin^2theta)`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
`(cos 28°)/(sin 62°)` = ?
In the diagram, given below, triangle ABC is right-angled at B and BD is perpendicular to AC.
Find:
(i) cos ∠DBC
(ii) cot ∠DBA
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
If tan = 0.75, find the other trigonometric ratios for A.
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of cos y
From the given figure, find the values of cosec C