Advertisements
Advertisements
प्रश्न
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
उत्तर
Sin (A + 2B) = Sin 60°
Cos (A + 4B) = cos 90°
A + 2B = 60° …(i)
A + 4B = 90° …(ii)
Subtracting (ii) from (i)
A + 4B = 90°
`(−A – 2B = −60)/(2B = 30°)` ∴ B = 15°
A + 4B = 90°
4B = 4(15°) = 4B = 60°
∴ A + 60° = 90° ∴ A = 30°
APPEARS IN
संबंधित प्रश्न
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If A = 600 and B = 300, verify that:
(iii) tan (A-B) = `(tan A-tanB)/(1+tan A tan B)`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
If 8 tanθ = 15, find (i) sinθ, (ii) cotθ, (iii) sin2θ - cot2θ
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
If cos A = `3/5`, then find the value of `(sin"A" - cos"A")/(2tan"A")`