Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
उत्तर
cose C = `(15)/(11)`
cose C = `(1)/"sin C" ="Hypotenuse"/"Perpendicular" = (15)/(11)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((15)^2 + (11)^2`
= `sqrt(225 - 121)`
= `sqrt(104)`
sin C = `"Perpendicular"/"Hypotenuse" = (11)/(15)`
cos C = `"Base"/"Hypotenuse" = sqrt(104)/(11)`
tan C = `"Perpendicular"/"Base" = (11)/sqrt(104)`
sec C = `(1)/"cos C" = (15)/(sqrt(104)`
cot C = `(1)/"tan A" = sqrt(104)/(11)`.
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If cos θ = `7/25` find the value of all T-ratios of θ .
Prove that
cosec (65 °+ θ) sec (25° − θ) − tan (55° − θ) + cot (35° + θ) = 0
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`