Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
उत्तर
cose C = `(15)/(11)`
cose C = `(1)/"sin C" ="Hypotenuse"/"Perpendicular" = (15)/(11)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((15)^2 + (11)^2`
= `sqrt(225 - 121)`
= `sqrt(104)`
sin C = `"Perpendicular"/"Hypotenuse" = (11)/(15)`
cos C = `"Base"/"Hypotenuse" = sqrt(104)/(11)`
tan C = `"Perpendicular"/"Base" = (11)/sqrt(104)`
sec C = `(1)/"cos C" = (15)/(sqrt(104)`
cot C = `(1)/"tan A" = sqrt(104)/(11)`.
APPEARS IN
संबंधित प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If Sin (A + B) = 1 and cos (A – B) = 1, 0° < A + B ≤ 90° A ≥ B. Find A & B
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If sec `theta = 17/8 ` verify that `((3-4sin^2theta)/(4 cos^2theta -3))=((3-tan^2theta)/(1-tan^2theta))`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
If sinA = `(3)/(5)`, find cosA and tanA.
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C