Advertisements
Advertisements
प्रश्न
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
उत्तर
sinA = `(12)/(13)`
sinA = `"Perpendicular"/"Hypotenuse" = (12)/(13)`
By Pythagoras theorem, we have
(Hypotenuse)2 = (Perpendicular)2 + (Base)2
⇒ Base = `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
⇒ Base
= `sqrt((13)^2 - (12)^2`
= `sqrt(169 - 144)`
= `sqrt(25)`
= 5
cosA = `"Base"/"Hypotenuse" = (5)/(13)`
secA = `(1)/"cosA" = (13)/(5)`
cotA = `(1)/"tanA" = (5)/(12)`
cosecA = `(1)/"sinA" = (13)/(12)`.
APPEARS IN
संबंधित प्रश्न
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
If sin θ = `"a"/sqrt("a"^2 + "b"^2)`, then show that b sin θ = a cos θ
A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)