Advertisements
Advertisements
प्रश्न
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
उत्तर
\[\begin{array}{l}\text{ L.H.S} = \sin( {50}^\circ + \theta) - \cos( {40}^\circ- \theta) + \tan 1^\circ \tan {10}^\circ \tan {80}^\circ \tan {89}^\circ \\ \end{array}\]
\[\begin{array}{l}= \sin{ {90}^\circ - ( {40}^\circ - \theta)} - \cos( {40}^\circ - \theta) + {\tan 1^\circ \tan( {90}^\circ - 1^\circ )}{\tan {10}^\circ \tan( {90}^\circ -{10}^{} )} \\ \end{array}\]
\[\begin{array}{l}= \cos( {40}^\circ - \theta)- \cos( {40}^\circ - \theta) + (\tan 1^\circ \cot 1^\circ )(\tan {10}^\circ \cot {10}^\circ ) \\ \end{array}\]
\[\begin{array}{l}= (\frac{1}{\cot 1^\circ } \times \cot 1^\circ )(\tan {10}^\circ \times \frac{1}{\tan {10}^0}) \\ \end{array}\]
\[\begin{array}{l}= 1 \times 1 \\ \end{array}\]
=RHS
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
If A = 600 and B = 300, verify that:
(ii) cos (A – B) = cos A cos B + sin A sin B
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`