Advertisements
Advertisements
प्रश्न
If 3 cot A = 2, then find the value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`
उत्तर
3 cot A = 2
⇒ cot A = `2/3`
AC2 = AB2 + BC2
= 32 + 22
= 9 + 4
AC = `sqrt(13)`
cos A = `"AB"/"AC" = 3/sqrt(13)`
sin A = `"BC"/"AC" = 2/sqrt(13)`
The value of `(4sin"A" - 3cos"A")/(2sin"A" + 3cos"A")`
= `4(2/sqrt(13)) - 3(3/sqrt(13)) ÷ 2(2/sqrt(13)) + 3(3/sqrt(13))`
= `(8/sqrt(13)) - (9/sqrt(13)) ÷ (4/sqrt(13)) + (9/sqrt(13))`
= `((8 - 9)/sqrt(13)) ÷((4 + 9)/sqrt(13))`
= `((-1)/sqrt(13)) ÷ (3/sqrt(13))`
= `((-1)/sqrt(13)) xx (sqrt(13)/13)`
The value is `((-1)/13)`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
sin20° = cos ______°
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
Use the information given in the following figure to evaluate:
`(10)/sin x + (6)/sin y – 6 cot y`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cos A = `(7)/(25)`