मराठी

If 3 cot A = 4, Check whether AA(1-tan2A1+tan2A)=cos2A-sin2A or not. - Mathematics

Advertisements
Advertisements

प्रश्न

If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.

बेरीज

उत्तर १

It is given that 3cot A = 4 or cot A = `4/3`

Consider a right triangle ABC, right-angled at point B.

cot A =` ("Side adjacent to ∠A")/("Side opposite to ∠A")`

`("AB")/("BC") =  4/3`

If AB is 4k, then BC will be 3k, where k is a positive integer.

In ΔABC,

(AC)2 = (AB)2 + (BC)2

= (4k)2 + (3k)2

= 16k2 + 9k2

= 25k2

AC = 5k

cos A = `("Side adjacent to ∠A")/"Hypotenuse" = ("AB")/("AC")`

= `(4k)/(5k)`

= `4/5`

sin A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AC")`

= `(3k)/(5k)`

= `3/5`

tan A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AB")`

= `(3k)/(4k)`

= `3/4`

`(1-tan^2 A)/(1+tan^2 A) = ((1 - (3/4)^2)/(1+(3/4)^2))`

= `((1-9/16)/(1+9/16))`

= `(7/16)/(25/16)`

= `7/25`

`cos^2 A + sin^2 A = (4/5)^2 - (3/5)^2`

= `16/25 - 9/25`

= `7/25`

∴ `(1-tan^2A)/(1+tan^2 A)= cos^2A - sin^2A`

shaalaa.com

उत्तर २

3 cot A = 4, check = `(1 - tan^2 A)/(1 + tan^2 A) = cos^2 A - sin^2 A`

cot A = `"adjacent side"/"opposite side" = 4/3`

Let x be the hypotenuse

By Applying Pythagoras theorem

AC2 = AB2 + BC2

x2 = 42 + 32

x2 = 252

x = 5

tan A = `1/(cos^2 A)` = `3/4`

cos A = `"adjacent side"/"hypotenuse" = 4/5`

sin A = `3/5`

L.H.S = `(1 - tan^2 A)/(1 + tan^2 A)`

= `(1 - (3/4)^2)/(1 + (3/4)^2)`

= `((16 - 9)/16)/((16 + 9)/16)`

= `7/25`

R.H.S cos2A - sin2 A = `(4/5)^2 - (3/5)^2`

= `(16 - 9)/25`

= `7/25`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.1 | Q 8 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.1 | Q 8 | पृष्ठ २४

संबंधित प्रश्‍न

If 𝜃 = 30° verify `cos 2 theta = (1 - tan^2 theta)/(1 + tan^2 theta)`


If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B


In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.


If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)


If tan θ =`15/ 8 `, find the values of all T-ratios of θ.


If sin A = `9/41` find all the values of cos A and tan A


If ∠A and ∠B are acute angles such that sin A = Sin B prove that ∠A = ∠B.


If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B


Evaluate:

`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2  45^0 sec^2 30^0)`


If A = 30, verify that:

(i) sin 2A = `(2 tan A)/(1+tan^2A)`


Given: cos A = `( 5 )/ ( 13 )`

Evaluate:

  1. `(sin "A "–cot "A") / (2 tan "A")`
  2. `cot "A" + 1/cos"A"`

In the given figure;

BC = 15 cm and sin B = `(4)/(5)`

  1. Calculate the measure of AB and AC.
  2. Now, if tan ∠ADC = 1; calculate the measures of CD and AD.

Also, show that: tan2B - `1/cos^2 "B" = – 1 .`


If sin A = cos A, find the value of 2 tan2A - 2 sec2 A + 5.


If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.


In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

cotA = `(1)/(11)`


In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.

sec B = `(15)/(12)`


In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C


If sinA = 0.8, find the other trigonometric ratios for A.


If sin A = `(7)/(25)`, find the value of : `"cos A" + (1)/"cot A"`


Evaluate: `5/(cot^2 30^circ) + 1/(sin^2 60^circ) - cot^2 45^circ + 2 sin^2 90^circ`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×