Advertisements
Advertisements
प्रश्न
Given: cos A = `( 5 )/ ( 13 )`
Evaluate:
- `(sin "A "–cot "A") / (2 tan "A")`
- `cot "A" + 1/cos"A"`
उत्तर
Consider the diagram below:
cos A = `( 5 )/( 13 )`
i.e. `"base"/"hypotenuse" = 5/13`
⇒ `"AB"/"AC" = 5/13`
Therefore, if length of AB = 5x, length of AC = 13x
Since
AB2 + BC2 = AC2 ...[Using Pythagoras Theroem]
(5x)2 + BC2 = (13x)2
BC2 = 169x2 – 25x2
BC2 = 144x2
∴ BC = 12x ...(perpendicular)
Now
tan A = `"perpendicular"/"base" = (12x)/(5x) = 12/5`
sin A = `"perpendicular"/"hypotenuse" = (12x)/(13x) = 12/13`
cot A = `"base"/"perpendicular" =(5x)/(12x) = 5/12`
(i) `(sin "A" – cot"A")/ (2tan "A")`
= `( 12 /13 – 5/12)/(2(12/5)`
= `(79)/(156). (5)/(24)`
= `( 395)/(3744 )`
(ii) cot A + `1/ cos "A"`
= `(5)/(12) + (1)/(5/13)`
= `(5)/(12) + (13)/(5)`
= `(181)/(60)`
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If 3tan θ 4 , show that `((4cos theta - sin theta ))/((4 cos theta + sin theta))=4/5`
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
From the given figure, find the values of cosec C
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
Assertion (A): For 0 < 0 ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Reason (R): cot2 θ – cosec2 θ = 1.