Advertisements
Advertisements
प्रश्न
From the given figure, find the values of cosec C
उत्तर
In the right ΔABD,
AD2 = AB2 – BD2
= 132 – 52
= 169 – 25
= 144
AD = `sqrt(144)`
= 12
In the right ΔADC,
AC2 = AD2 + DC2
= 122 + 162
= 144 + 256
= 400
AC = `sqrt(400)`
= 20
cosec C = `"hypotenuse"/"opposite side" = "AC"/"AD" = 20/12 = 5/3`
APPEARS IN
संबंधित प्रश्न
If θ = 30° verify that `sin 2theta = (2 tan theta)/(1 + tan^2 theta)`
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: sin P
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x