Advertisements
Advertisements
प्रश्न
In the figure given below, ABC is an isosceles triangle with BC = 8 cm and AB = AC = 5 cm. Find:
(i) sin B
(ii) tan C
(iii) sin2 B + cos2B
(iv) tan C - cot B
उत्तर
Consider the figure below :
In the isosceles ΔABC, AB =AC = 5cm and BC = 8cm the perpendicular drawn from angle A to the side BC divides the side BC into two equal parts BD = DC = 4 cm
Since ∠ADB = 90°
⇒ AB2 + AD2 + BD2 ...( AB is hypotenuse in ΔABD)
⇒ AD2 = 52 – 42
∴ AD2 = 9 and AD = 3
(i) sin B = `"AD"/"AB" = (3)/(5)`
(ii) tan C = `"AD"/"DC" = (3)/(4)`
(iii) sin B = `"AD"/"AB" = (3)/(5)`
cos B = `"BD"/"AB" = (4)/(5)`
Therefore
sin2 B + cos2 B
= `(3/5)^2 + (4/5)^2`
= `(25)/(25)`
= 1
(iv) tan C = `"AD"/"DC" = (3)/(4)`
cot B = `"BD"/"AD" = (4)/(3)`
Therefore
tan C – cot B
= `(3)/(4) – (4)/(3)`
= `– (7)/(12)`
APPEARS IN
संबंधित प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
sin20° = cos ______°
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`