Advertisements
Advertisements
प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
उत्तर
Given:
θ = 30° ......(1)
To verify
cos 3θ = 4 cos3 θ − 3 cos θ .....(2)
Now consider left-hand side of the expression in equation (2)
Therefore
`cos 3theta = cos 3 xx 30`
= cos 90
= 0
Now consider right hand side of the expression to be verified in equation (2)
Therefore
`4cos^3 theta - 3 cos theta = 4cos^3 30 - 3 cos 30`
`= 4 xx (sqrt3/2)^3 - 3 xx (sqrt3/2)`
`= (3sqrt3)/3 = (3sqrt3)/2`
= 0
Hence it is verified that,
`cos 3theta = 4cos^3 theta - 3 cos theta`
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
If θ = 30° verify `tan 2 theta = (2 tan theta)/(1 - tan^2 theta)`
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
From the given figure, find the values of sec B