Advertisements
Advertisements
प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
उत्तर
Given:
θ = 30° ......(1)
To verify
cos 3θ = 4 cos3 θ − 3 cos θ .....(2)
Now consider left-hand side of the expression in equation (2)
Therefore
`cos 3theta = cos 3 xx 30`
= cos 90
= 0
Now consider right hand side of the expression to be verified in equation (2)
Therefore
`4cos^3 theta - 3 cos theta = 4cos^3 30 - 3 cos 30`
`= 4 xx (sqrt3/2)^3 - 3 xx (sqrt3/2)`
`= (3sqrt3)/3 = (3sqrt3)/2`
= 0
Hence it is verified that,
`cos 3theta = 4cos^3 theta - 3 cos theta`
APPEARS IN
संबंधित प्रश्न
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sec 2A = cosec (A – 42°) where 2A is an acute angle. Find the value of A.
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
If cosec θ= 2 show that `(cot θ +sin θ /(1+cos θ )) =2`
If sin ∝ = `1/2` prove that (3cos∝ - `4cos^2` ∝)=0
Evaluate:
cos450 cos300 + sin450 sin300
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
From the following figure, find:
(i) y
(ii) sin x°
(iii) (sec x° - tan x°) (sec x° + tan x°)
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`