Advertisements
Advertisements
प्रश्न
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
उत्तर
Here 20 + 45° and 30 – θ° are acute angles:
We know that (90 – θ) = cos θ
sin (2θ + 45°) = sin (90 – (30 – θ))
sin (2θ + 45°) = sin (90 – 30 + θ)
sin (20 + 45°) = sin (60 + θ)
On equating sin of angle of we get
2θ + 45 = 60 + θ
2θ – θ = 60 – 45
θ = 15°
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If x = cot A + cos A and y = cot A – cos A then prove that `((x-y)/(x+y))^2 + ((x-y)/2)^2=1`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR