Advertisements
Advertisements
प्रश्न
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
उत्तर
We know that sec (90 – θ) = cosec2 θ
Sec θ = sec (90 – 60°)
On equating we get
Sec θ = sec 30°
𝜃 = 30°
To Find 2 cos2 θ – 1
`=> 2 xx cos^2 30^@ - 1` `[cos 30 = sqrt3/2]`
`=> 2 xx (sqrt3/2)^2 - 1`
`=> 2 xx 3/4 - 1`
`=> 3/2 - 1`
`= 1/2`
APPEARS IN
संबंधित प्रश्न
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
If A = 300 , verify that:
(i) sin 2A = `(2 tan A)/(1+tan^2A)`
Given : 17 cos θ = 15;
Find the value of: tan θ + 2 secθ .
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
From the given figure, find all the trigonometric ratios of angle B
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`
From the given figure, prove that θ + ∅ = 90°. Also prove that there are two other right angled triangles. Find sin α, cos β and tan ∅