Advertisements
Advertisements
प्रश्न
If A = 450 , verify that:
(ii) cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
उत्तर
A= 450
`⇒ 2A = 2xx45^0=90^0`
(ii) cos 2 A = cos `90^0 = 0`
`2 cos^2 -1 = 2 cos ^2 45 ^0-1 = 2 xx(1/sqrt(2))^2 -1=2 xx1/2 -=1-1=0`
Now , `1-2 sin^2 A =1-2 xx(1/sqrt(2)^2 )-1=1-2xx1/2=1-1=0`
∴ cos 2A = 2 cos2 A – 1 = 1 – 2 sin2 A
APPEARS IN
संबंधित प्रश्न
if `sec A = 5/4` verify that `(3 sin A - 4 sin^3 A)/(4 cos^3 A - 3 cos A) = (3 tan A - tan^3 A)/(1- 3 tan^2 A)`
In ∆PQR, right-angled at Q, PQ = 3 cm and PR = 6 cm. Determine ∠P and ∠R.
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
Given : sin A = `(3)/(5)` , find : (i) tan A (ii) cos A
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
A boy standing at a point O finds his kite flying at a point P with distance OP = 25 m. It is at a height of 5 m from the ground. When the thread is extended by 10 m from P, it reaches a point Q. What will be the height QN of the kite from the ground? (use trigonometric ratios)