Advertisements
Advertisements
प्रश्न
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: cot2P - cosec2P
उत्तर
cosP = `"PS"/"PQ" = (4)/(5)`
cot2P - cosec2P
= `("cos P"/"sin P")^2 - (1/"sin P")^2`
= `((4/5)/(3/5))^2 - (1/(3/5))^2`
= `(4/3)^2 - (5/3)^2`
= `(16)/(9) - (25)/(9)`
= `-(9)/(9)`
= -1.
APPEARS IN
संबंधित प्रश्न
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
cos 40° = sin ______°
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
In rectangle ABCD, diagonal BD = 26 cm and cotangent of angle ABD = 1.5. Find the area and the perimeter of the rectangle ABCD.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
tanB = `(8)/(15)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cosec C