Advertisements
Advertisements
प्रश्न
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
उत्तर
Consider the figure:
tan x° = `(3)/(4)`
i.e. `"perpendicular"/"base" = "BC"/"AB" =(3)/(4)`
Therefore if length of base = 4x, length of perpendicular = 3x
Since
BC2 + AB2 = AC2 ...[Using Pythagoras Theorem]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2
AC2 = 25x2
AC = `sqrt(25x^2)`
∴ AC = 5x
Now
BC = 15
3x = 15
x = `15/3`
x = 5
Therefore
AB = 4x
= 4 × 5
= 20 cm
And
AC = 5x
= 5 × 5
= 25 cm
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
In the adjoining figure, ΔABC is a right-angled triangle in which ∠B = 900, ∠300 and AC = 20cm. Find (i) BC, (ii) AB.
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
sin20° = cos ______°
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
If sec A = `sqrt2`, find the value of :
`(3cos^2"A"+5tan^2"A")/(4tan^4"A"–sin^2"A")`
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y
From the given figure, find the values of cosec C