Advertisements
Advertisements
प्रश्न
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
उत्तर
Consider the figure:
tan x° = `(3)/(4)`
i.e. `"perpendicular"/"base" = "BC"/"AB" =(3)/(4)`
Therefore if length of base = 4x, length of perpendicular = 3x
Since
BC2 + AB2 = AC2 ...[Using Pythagoras Theorem]
(3x)2 + (4x)2 = AC2
AC2 = 9x2 + 16x2
AC2 = 25x2
AC = `sqrt(25x^2)`
∴ AC = 5x
Now
BC = 15
3x = 15
x = `15/3`
x = 5
Therefore
AB = 4x
= 4 × 5
= 20 cm
And
AC = 5x
= 5 × 5
= 25 cm
APPEARS IN
संबंधित प्रश्न
If tan θ =`15/ 8 `, find the values of all T-ratios of θ.
In a ΔABC , ∠B = 90° , AB= 24 cm and BC = 7 cm find (i) sin A (ii) cos A (iii) sin C (iv) cos C
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: sinB
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA
In the given figure, PQR is a triangle, in which QS ⊥ PR, QS = 3 cm, PS = 4 cm and QR = 12 cm, find the value of: 4sin2R - `(1)/("tan"^2"P")`