Advertisements
Advertisements
प्रश्न
In the following figure:
AD ⊥ BC, AC = 26 CD = 10, BC = 42, ∠DAC = x and ∠B = y.
Find the value of :
(i) cot x
(ii) `1/sin^2 y – 1/tan^2 y`
(iii) `6/cos x – 5/cos y + 8 tan y`.
उत्तर
Given the angle, DAC = 90° and ∠ADB = 90° in the figure
⇒ AC2 = AD2 + DC2 ...(AC is hypotenuse in ΔADC)
⇒ AD2 = AC2 - DC2
⇒ AD2 = 262 – 102
∴ AD2 = 576
∴ AD2 = `sqrt(576)`
∴ AD = 24
Again, In ΔABD
⇒ AB2 = AD2 + BD2 ...(AB is hypotenuse in ΔABD)
⇒ AB2 = 242 + 322
⇒ AB2 = 576 + 1024
⇒ AB2 = `sqrt1600`
∴ AB = 40
Now
(i) cot x = `"base"/"perpendicular" = "AD"/"CD" = (24)/(10) = 2. 4`
(ii) sin y = `"perpendicular"/"hypotenuse" ="AD"/"AB" = (24)/(40) = (3)/(5)`
tan y = `"perpendicular"/"base" ="AD"/"BD" = (24)/(32) = (3)/(4)`
Therefore
`1/sin^2 y – 1/tan^2 y`
= `1/(3/5)^2 – 1/(3/4)^2`
= `(5/3)^2 - (4/3)^2`
= `(25)/(9) – (16)/(9)`
= `(9)/(9)`
= 1
(iii) tan y =`"perpendicular"/"base" = "AD"/"BD" = (24)/(32) = (3)/(4)`
cos x = `"base"/"hypotenuse" = "AD"/"AC" = (24)/(26) = (12)/(13)`
cos y = `"base"/"hypotenuse" = "BD"/"AB" = (32)/(40) = (4)/(5)`
Therefore
`6/ cos x – 5/ cos y + 8tan y`
= `6/(12/13) – 5/(4/5) + 8(3/4)`
= `(13)/(2) – (25)/(4) + 6`
= `(26 – 25 + 24)/(4)`
= `(25)/(4)`
= `6(1)/(4)`
APPEARS IN
संबंधित प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
`2cos^2 60^0+3 sin^2 45^0 - 3 sin^2 30^0 + 2 cos^2 90 ^0`
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
If cos θ : sin θ = 1 : 2, then find the value of `(8costheta - 2sintheta)/(4costheta + 2sintheta`
Given that sin α = `1/2` and cos β = `1/2`, then the value of α + β is ______.