Advertisements
Advertisements
प्रश्न
If A = 30° B = 60° verify Sin (A + B) = Sin A Cos B + cos A sin B
उत्तर
Given
`A = 30^@ and B =60^@` .....(1)
To verify
sin (A + B) = sin A cos B + cos A sin B .....(2)
Now consider LHS of the expression to be verified in equation (2)
Therefore
sin(A + B) = sin (30 + 60)
= sin 90
= 1
Now consider RHS of the expression to be verified in equation (2)
Therefore;
`sinA cosB + cosA sinB = sin 30^@ cos 60^@ + cos 30^@ sin 60^@`
`= 1/2 xx 1/2 + sqrt3/2 xx (sqrt3)/2`
`= (1 + 3)/4`
= 1
Hence it is verified that,
Sin (A + B) = Sin A Cos B + cos A sin B
APPEARS IN
संबंधित प्रश्न
if `sec theta = 5/4` find the value of `(sin theta - 2 cos theta)/(tan theta - cot theta)`
if `sin theta = 3/5 " evaluate " (cos theta - 1/(tan theta))/(2 cot theta)`
Find acute angles A & B, if sin (A + 2B) = `sqrt3/2 cos(A + 4B) = 0, A > B`
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If cos θ = `7/25` find the value of all T-ratios of θ .
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
Using the formula, cos A = `sqrt((1+cos2A)/2) ,`find the value of cos 300, it being given that cos 600 = `1/2`.
Given: 4 cot A = 3
find :
(i) sin A
(ii) sec A
(iii) cosec2A - cot2A.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
From the given figure, find the values of cos C