Advertisements
Advertisements
प्रश्न
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
उत्तर
LHS = `((sin theta - cot theta ))/(2tantheta)`
=`(sin theta costheta /sintheta )/(2(sintheta/costheta))`
=`((sin^2theta - costheta)/sintheta)/((2 sintheta/costheta))`
=` (costheta(sin^2theta-costheta))/(2sin^2theta)`
=`(costheta (1-cos^2theta-costheta))/(2(1-cos^2theta))`
=`(3/5[1-(3/5)^2-3/5])/(2[1-(3/5)^2])`
=`(3/5(1/1-9/25-3/5))/(2(1-9/25))`
=`(3/5((25-9-15)/25))/(2((25-9)/25))`
=`(3/5(1/25))/(2(16/25))`
=`3/(5xx2xx16)`
=`3/160`
= RHS
APPEARS IN
संबंधित प्रश्न
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If x = cosec A +cos A and y = cosec A – cos A then prove that `(2/(x+y))^2 + ((x-y)/2)^2` = 1
Evaluate:
`(sin30°)/(cos 45°)+(cot45°)/(sec60° )- (sin60°)/(tan45°)+(cos30°)/(sin90°)`
If A = 600 and B = 300, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
If cos A = `(1)/(2)` and sin B = `(1)/(sqrt2)`, find the value of: `(tan"A" – tan"B")/(1+tan"A" tan"B")`.
Are angles A and B from the same triangle? Explain.
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cot C
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C