Advertisements
Advertisements
प्रश्न
Given : 5 cos A - 12 sin A = 0; evaluate:
`(sin "A"+cos"A")/(2 cos"A"– sin"A")`
उत्तर
5 cos A – 12 sin A = 0
5 cos A = 12 sin A
`sin "A"/cos "A" = (5)/(12)`
tan A = `(5)/(12)`
Now,
`(sin "A"+cos"A")/(2 cos"A"– sin"A") = (sin"A"/cos"A" + cos"A"/cos"A")/(2 cos"A"/cos"A" – sin"A"/cos"A")`
= `(tan "A"+1)/(2– tan "A")`
= `(5/12+1)/(2–5/12)`
= `(17/12)/(19/12)`
= `(17)/(19)`
APPEARS IN
संबंधित प्रश्न
f θ = 30°, verify that cos 3θ = 4 cos3 θ − 3 cos θ
If 2θ + 45° and 30° − θ are acute angles, find the degree measure of θ satisfying Sin (20 + 45°) = cos (30 - θ°)
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
In a ΔABC , ∠B = 90° , AB = 12 cm and BC = 5 cm Find
(i) cos A (ii) cosec A (iii) cos C (iv) cosec C
Given: sec A = `( 29 )/(21), "evaluate : sin A" - 1/tan "A"`
If tan A + cot A = 5;
Find the value of tan2 A + cot2 A.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
From the given figure, find the values of cosec C