Advertisements
Advertisements
प्रश्न
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
उत्तर
Since D is mid-point of AC so AC = 2DC
(i) `(tan∠CAB)/ (tan∠CDB)`
= `("BC"/"AC")/("BC"/"DC")`
= `"BC"/"2 DC"."DC"/"BC"`
= `(1)/(2)`
(ii) `(tan∠ABC)/ (tan∠DBC)`
= `("AC"/"BC")/("DC"/"BC")`
= `"2 DC"/"BC"."BC"/"DC"`
= 2
APPEARS IN
संबंधित प्रश्न
In rectangle ABCD AB = 20cm ∠BAC = 60° BC, calculate side BC and diagonals AC and BD.
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
If cos θ = `3/5` , show that `((sin theta - cot theta ))/(2tan theta)=3/160`
Using the formula, tan 2A =`(2 tan A )/(1- tan^2 A)` find the value of tan 600, it being given that tan 300 = `1/sqrt(3)`.
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
If tan x = `1(1)/(3)`, find the value of : 4 sin2x - 3 cos2x + 2
If 5 cos θ = 3, evaluate : `(co secθ – cot θ)/(co secθ + cot θ)`
If cosec θ = `(29)/(20)`, find the value of: `("sec" θ)/("tan" θ - "cosec" θ)`
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: sin A cos A