Advertisements
Advertisements
प्रश्न
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
उत्तर
LHS = `sqrt(" sec θ - cosec θ "/"secθ + cosecθ")`
=`sqrt(((1/costheta-1/sintheta))/((1/costheta+1/(sin theta)))`
=`sqrt((((sintheta-costheta)/(sintheta costheta)))/(((sintheta + costheta)/(sintheta costhet)))`
=`sqrt((((sintheta-costheta)/(sintheta)))/(((sintheta + costheta)/(sintheta)))`
=`sqrt((((sintheta) /(sintheta)-(costheta)/sintheta))/(((sintheta)/(sintheta)+(costheta)/(sintheta)))`
=`sqrt((1-costheta)/(1+costheta))`
=`sqrt(((1-3/4))/((1+3/4)))`
=`sqrt(((1/4))/((7/4)))`
=`sqrt(1/7)`
=`1/sqrt(7)`
= RHS
APPEARS IN
संबंधित प्रश्न
If sec θ = `5/4 ` show that `((sin θ - 2 cos θ))/(( tan θ - cot θ)) = 12/7`
Show that:
(i)` (1-sin 60^0)/(cos 60^0)=(tan60^0-1)/(tan60^0+1)`
Verify each of the following:
(i)`sin 60^0 cos 30^0-cos 60^0 sin 30^0`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 300. If BC = 6cm, find (i) AB, (ii) AC.
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
Given: sin θ = `p/q`.
Find cos θ + sin θ in terms of p and q.
If sec A = `sqrt2` , find : `(3cot^2 "A"+ 2 sin^2 "A")/ (tan^2 "A" – cos ^2 "A")`.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In the given figure, AD is the median on BC from A. If AD = 8 cm and BC = 12 cm, find the value of tan x. cot y
If 2 cos θ = `sqrt(3)`, then find all the trigonometric ratios of angle θ