Advertisements
Advertisements
प्रश्न
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
उत्तर
LHS = `sqrt(" sec θ - cosec θ "/"secθ + cosecθ")`
=`sqrt(((1/costheta-1/sintheta))/((1/costheta+1/(sin theta)))`
=`sqrt((((sintheta-costheta)/(sintheta costheta)))/(((sintheta + costheta)/(sintheta costhet)))`
=`sqrt((((sintheta-costheta)/(sintheta)))/(((sintheta + costheta)/(sintheta)))`
=`sqrt((((sintheta) /(sintheta)-(costheta)/sintheta))/(((sintheta)/(sintheta)+(costheta)/(sintheta)))`
=`sqrt((1-costheta)/(1+costheta))`
=`sqrt(((1-3/4))/((1+3/4)))`
=`sqrt(((1/4))/((7/4)))`
=`sqrt(1/7)`
=`1/sqrt(7)`
= RHS
APPEARS IN
संबंधित प्रश्न
If `sin (A – B) = 1/2` and `cos (A + B) = 1/2`, `0^@` < A + `B <= 90^@`, A > B Find A and B.
If ∠A and ∠B are acute angles such that tan A= Tan B then prove that ∠A = ∠B
Evaluate:
`(5 cos^2 60^circ + 4 sec^2 30^circ - tan^2 45^circ)/(sin^2 30^circ + cos^2 30^circ)`
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
In the adjoining figure, ΔABC is right-angled at B and ∠A = 450. If AC = 3`sqrt(2)`cm, find (i) BC, (ii) AB.
Form the following figure, find the values of:
- cos B
- tan C
- sin2B + cos2B
- sin B. cos C + cos B. sin C
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`
If sinA = 0.8, find the other trigonometric ratios for A.