Advertisements
Advertisements
प्रश्न
Evaluate:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
उत्तर
On substituting the values of various T-ratios, we get:
`4/(cot^2 30^0) +1/(sin^2 30^0) -2 cos^2 45^0 - sin^2 0^0`
=`4/(sqrt(3))^2 + 1/(1/2)^2 -2xx(1/sqrt(2))^2-(0)^2`
=`4/3 +1/(1/4) -2xx1/2-0`
=`4/3 +4-1`
=`4/3+3=(4+9)/3=13/3`
APPEARS IN
संबंधित प्रश्न
In ΔPQR, right angled at Q, PQ = 4 cm and RQ = 3 cm. Find the values of sin P, sin R, sec P and sec R.
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If θ is a positive acute angle such that sec θ = cosec 60°, find 2 cos2 θ – 1
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If tan `theta = a/b`, show that `((a sin theta - b cos theta))/((a sin theta + bcos theta))= ((a^2-b^2))/(a^2+b^2)`
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
In triangle ABC, AB = AC = 15 cm and BC = 18 cm, find cos ∠ABC.
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
Statement A (Assertion): For 0 < θ ≤ 90°, cosec θ – cot θ and cosec θ + cot θ are reciprocal of each other.
Statement R (Reason): cosec2 θ – cot2 θ = 1