Advertisements
Advertisements
प्रश्न
If sin (A+B) = sin A cos B + cos A sin B and cos (A-B) = cos A cos B + sin A sin B
(i) sin (750)
(ii) cos (150)
उत्तर
Let A = 450 and B = 300
(i) As, sin(A + B) = sin A cos B + cos A sin B
⇒ sin (450 + 300) = sin 450 cos 300 + cos 450 sin 300
⇒ sin `(75^0) = 1/sqrt(2) xx sqrt(3)/2 + 1/sqrt(2) xx1/2`
⇒ sin `(75^0) = sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2))`
∴ sin `(75^0) = (sqrt(3) +1)/(2 sqrt(2))`
ii) As, cos (A – B) = cos A cos B + sin A sin B
⇒ cos (450 – 300) = cos 450 cos 300 + sin 450 sin 300
⇒ cos `(15^0) = 1/sqrt(2) xx sqrt(3)/2 + 1/sqrt(2) xx1/2`
⇒ cos `(15^0) = sqrt(3)/(2sqrt(2)) + 1/(2sqrt(2))`
∴ cos `(15^0)=(sqrt(3)+1)/(2sqrt(2))`
Disclaimer: cos 150 can also be written by taking A = 600 and B = 450.
APPEARS IN
संबंधित प्रश्न
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If sin θ = ` (a^2 - b^2)/(a^2+b^2)`find all the values of all T-ratios of θ .
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 600 and B = 300, verify that:
(i) sin (A – B) = sin A cos B – cos A sin B
In rhombus ABCD, diagonals AC and BD intersect each other at point O.
If cosine of angle CAB is 0.6 and OB = 8 cm, find the lengths of the side and the diagonals of the rhombus.
In triangle ABC, AB = AC = 15 cm and BC = 18 cm. Find:
- cos B
- sin C
- tan2 B - sec2 B + 2
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of sin ∠PQS
In a right-angled triangle PQR, ∠PQR = 90°, QS ⊥ PR and tan R =`(5)/(12)`, find the value of tan ∠SQR