Advertisements
Advertisements
प्रश्न
If cos A = `(2x)/(1 + x^2)`, then find the values of sin A and tan A in terms of x
उत्तर
cos A = `(2x)/(1 + x^2)`
In the triangle ABC
BC2 = AC2 – AB2
= (1 + x2)2 – (2x)2
= 1 + x4 + 2x2 – 4x2
= x4 – 2x2 + 1
= (x2 – 1)2 or (1 – x2)2 ...[using (a – b)2]
BC = `sqrt((x^2 - 1)^2` or `sqrt((1 - x^2)^2`
BC = x2 – 1
The value of sin A = `"BC"/"AC" = (x^2 - 1)/(x^2 + 1)`
tan A = `"BC"/"AB" = (x^2 - 1)/(2x)`
and
BC = 1 – x2
The value of sin A = `(1 - x^2)/(x^2 + 1)`
tan A = `(1 - x^2)/(2x)`
APPEARS IN
संबंधित प्रश्न
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If A = B = 60°, verify that sin (A − B) = sin A cos B − cos A sin B
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If sin θ = `3/4` show that `sqrt((cosec^2theta - cot^2theta)/(sec^2theta-1)) =sqrt(7)/3`
In the adjoining figure, `∠B = 90° , ∠BAC = theta° , BC = CD = 4cm and AD = 10 cm`. find (i) sin theta and (ii) `costheta`
Show that:
(ii) `(cos30^0+sin 60^0)/(1+sin30^0+cos60^0)=cos 30^0`
Using the formula, sin A = `sqrt((1-cos 2A)/2) ` find the value of sin 300, it being given that cos 600 = `1/2`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cosB = `(4)/(5)`
If sin A = `(7)/(25)`, find the value of : `(2"tanA")/"cot A - sin A"`
If cosec θ = `(29)/(20)`, find the value of: cosec θ - `(1)/("cot" θ)`