Advertisements
Advertisements
प्रश्न
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that cosec θ = `"𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"/" 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟"= (AC)/(AB) = sqrt(10)/1`
So, if AC =` (sqrt(10))`𝑘, 𝑡ℎ𝑒𝑛 𝐴𝐵 = 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Now, by using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ BC^2 = AC^2 + BC^2`
`⟹ BC^2 = 9K^2`
⟹ BC = 3k
Now, finding the other T-ratios using their definitions, we get:
tan θ =`(AB)/(BC) = K/(3K) = 1/3`
cos θ = `(BC)/(AC) = (3K)/(sqrt(10 k)) = 3/(sqrt(10)`
∴ sin θ = `1/(cosec θ) = 1/(sqrt(10)) , cot θ = 1/ (tan θ ) = 3 and sec θ 1/(cos θ) = (sqrt(10))/3`
APPEARS IN
संबंधित प्रश्न
If 8 tan A = 15, find sin A – cos A.
If cos 2θ = sin 4θ where 2θ, 4θ are acute angles, find the value of θ.
If tan θ = `4/3`, show that `(sintheta + cos theta )=7/5`
Evaluate:
cos600 cos300− sin600 sin300
Evaluate:
cos450 cos300 + sin450 sin300
From the following figure, find the values of:
- sin A
- cos A
- cot A
- sec C
- cosec C
- tan C
If 5 cot θ = 12, find the value of : Cosec θ+ sec θ
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinB = `sqrt(3)/(2)`
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
If cosB = `(1)/(3)` and ∠C = 90°, find sin A, and B and cot A.