Advertisements
Advertisements
Question
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
Solution
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that cosec θ = `"𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"/" 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟"= (AC)/(AB) = sqrt(10)/1`
So, if AC =` (sqrt(10))`𝑘, 𝑡ℎ𝑒𝑛 𝐴𝐵 = 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Now, by using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ BC^2 = AC^2 + BC^2`
`⟹ BC^2 = 9K^2`
⟹ BC = 3k
Now, finding the other T-ratios using their definitions, we get:
tan θ =`(AB)/(BC) = K/(3K) = 1/3`
cos θ = `(BC)/(AC) = (3K)/(sqrt(10 k)) = 3/(sqrt(10)`
∴ sin θ = `1/(cosec θ) = 1/(sqrt(10)) , cot θ = 1/ (tan θ ) = 3 and sec θ 1/(cos θ) = (sqrt(10))/3`
APPEARS IN
RELATED QUESTIONS
If 3 cot A = 4, Check whether `((1-tan^2 A)/(1+tan^2 A)) = cos^2 "A" - sin^2 "A"` or not.
If `sin A = 9/41` compute cos 𝐴 𝑎𝑛𝑑 tan 𝐴
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of Sin A cos C + Cos A Sin C
If A and B are acute angles such that tan A = 1/2, tan B = 1/3 and tan (A + B) = `(tan A + tan B)/(1- tan A tan B)` A + B = ?
If A, B, C are the interior angles of a ΔABC, show that `cos[(B+C)/2] = sin A/2`
Evaluate:
cos600 cos300− sin600 sin300
Verify each of the following:
(ii)`cos 60^0 cos 30^0+ sin 60^0 sin30^0`
tan 30° × tan ______° = 1
If sin A = `(sqrt3)/(2)` and cos B = `(sqrt3)/(2)` , find the value of : `(tan"A" – tan"B")/(1+tan"A" tan"B")`
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
cose C = `(15)/(11)`