Advertisements
Advertisements
प्रश्न
If cosec θ = `sqrt(10)` find all the values of all T-ratios of θ
उत्तर
Let us first draw a right ΔABC, right angled at B and ∠𝐶 = 𝜃
Now, we know that cosec θ = `"𝐻𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"/" 𝑃𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟"= (AC)/(AB) = sqrt(10)/1`
So, if AC =` (sqrt(10))`𝑘, 𝑡ℎ𝑒𝑛 𝐴𝐵 = 𝑘 𝑖𝑠 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑛𝑢𝑚𝑏𝑒𝑟.
Now, by using Pythagoras theorem, we have:
`AC^2 = AB^2 + BC^2`
`⟹ BC^2 = AC^2 + BC^2`
`⟹ BC^2 = 9K^2`
⟹ BC = 3k
Now, finding the other T-ratios using their definitions, we get:
tan θ =`(AB)/(BC) = K/(3K) = 1/3`
cos θ = `(BC)/(AC) = (3K)/(sqrt(10 k)) = 3/(sqrt(10)`
∴ sin θ = `1/(cosec θ) = 1/(sqrt(10)) , cot θ = 1/ (tan θ ) = 3 and sec θ 1/(cos θ) = (sqrt(10))/3`
APPEARS IN
संबंधित प्रश्न
In right angled triangle ABC. ∠C = 90°, ∠B = 60°. AB = 15 units. Find remaining angles and sides.
If sin θ = `a/b`, show that `(sectheta + tan theta) = sqrt((b+a)/(b-a))`
In ΔABC , ∠C = 90° ∠ABC = θ° BC = 21 units . and AB= 29 units. Show thaT `(cos^2 theta - sin^2 theta)=41/841`
Evaluate:
`(sin^2 30^0 + 4 cot^2 45^0-sec^2 60^0)(cosec^2 45^0 sec^2 30^0)`
If A = 300 , verify that:
(iii) tan 2A = `(2tanA)/(1-tan^2A)`
If A and B are acute angles such that tan A =`1/3, tan B = 1/2 and tan (A + B) =` show that `A+B = 45^0`
If sin (A – B) = `1/2` and cos (A + B) = `1/2, 0^0 ≤ (A + B) ≤ 90^0` and A > B, then find A and B.
If 2 sin x = `sqrt3` , evaluate.
(i) 4 sin3 x - 3 sin x.
(ii) 3 cos x - 4 cos3 x.
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A