Advertisements
Advertisements
प्रश्न
In ΔABC, ∠A = 90°. If AB = 5 units and AC = 12 units, find: tan B.
उत्तर
In ΔABC,
BC2 = AB2 + AC2
⇒ BC = `sqrt("AB"^2 + "AC"^2)`
⇒ BC = `sqrt(5^2 + 12^2)`
= `sqrt(169)`
= 13
AC = 12 units
BC = 13units
AB = 5units
tan B
= `"Perpendcular"/"Base"`
= `"AC"/"AB"`
= `(12)/(5)`.
APPEARS IN
संबंधित प्रश्न
In Fig below, Find tan P and cot R. Is tan P = cot R?
If sin θ ,` sqrt (3)/2` find the value of all T- ratios of θ .
If cot θ = 2 find all the values of all T-ratios of θ .
Evaluate:
`cot^2 30^0-2cos^2 30^0-3/4 sec^2 45^0 +1/4 cosec^2 30^0`
If A = 450, verify that :
(i) sin 2A = 2 sin A cos A
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
If 3 cos A = 4 sin A, find the value of :
(i) cos A(ii) 3 - cot2 A + cosec2A.
If cosec A + sin A = 5`(1)/(5)`, find the value of cosec2A + sin2A.
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`
In an isosceles triangle ABC, AB = BC = 6 cm and ∠B = 90°. Find the values of cos2 C + cosec2 C