Advertisements
Advertisements
рдкреНрд░рд╢реНрди
In Fig below, Find tan P and cot R. Is tan P = cot R?
рдЙрддреНрддрд░
Let x be the adjacent side.
By Pythagoras theorem
ЁЭСГЁЭСЕ2 = ЁЭСГЁЭСД2 + ЁЭСЕЁЭСД2
169 = ЁЭСе2 + 144
ЁЭСе2 = 25
ЁЭСе = 5
At LP, opposite side = 5
Adjacent side = 12
Hypotenuse = 13
`tan P = (1/12)/5 => 5/12`
At LR, opposite side = 12
Adjacent side = 5
Hypotenuse = 13
`cot R = 1/tan R = 1/(12/5) = 5/12`
`[тИ╡ Tan R = "ЁЭСЬЁЭСЭЁЭСЭЁЭСЬЁЭСаЁЭСЦЁЭСбЁЭСТ ЁЭСаЁЭСЦЁЭССЁЭСТ"/"ЁЭСОЁЭССЁЭСЧЁЭСОЁЭСРЁЭСТЁЭСЫЁЭСб ЁЭСаЁЭСЦЁЭССЁЭСТ"]`
тИ╡ tan P = cot R
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНтАНрди
In right angled triangle ΔABC at B, ∠A = ∠C. Find the values of sin A sin B + cos A cos B
If cos θ=0.6 show that (5sin θ -3tan θ) = 0
Prove that
sin (50° + θ ) − cos (40° − θ) + tan 1° tan 10° tan 80° tan 89° = 1.
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
If sin A + cosec A = 2;
Find the value of sin2 A + cosec2 A.
In each of the following, one trigonometric ratio is given. Find the values of the other trigonometric.
sinA = `(12)/(13)`
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: tan A
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: cos C
If sin θ = `(8)/(17)`, find the other five trigonometric ratios.
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`