Advertisements
Advertisements
प्रश्न
From the following figure, find the values of
(i) sin B
(ii) tan C
(iii) sec2 B - tan2B
(iv) sin2C + cos2C
उत्तर
Given angle ADB = 90° and ADC = 90°
⇒ AB2 = AD2 + BD2 ...( AB is hypotenuse in ΔABD)
⇒ 132 = AD2 + 52
∴ AD2 = 169 – 25 = 144 and AD = 12
⇒ AC2 = AD2 + DC2 ...( AC is hypotenuse in ΔADC)
⇒ AC2 = 122 + 162
∴ AC2 = 144 + 256 = 400 and AC = 20
(i) sin B = `"perpendicular"/"hypotenuse" = "AD"/"AB" = (12)/(13)`
(ii) tan C = `"perpendicular"/"base" = "AD"/"DC" = (12)/(16) = (3)/(4) `
(iii) sec B = `"hypotenuse"/"base" = "AB"/"BD" = (13)/(5)`
tan B = `"perpendicular"/"base" = "AD"/"BD" = (12)/(5) `
sec2 B – tan2 B = `(13/5)^2 – (12/5)^2`
= `(169 – 144)/( 25)`
= `(25)/(25)`
= 1
(iv) sin C = `"perpendicular"/"hypotenuse" = "AD"/"AC" = (12)/(20) = (3)/(5)`
cos C = `"base"/"hypotenuse" = "DC"/"AC" = (16)/(20) = (4)/(5)`
sin2 C + cos2 C = `(3/5)^2 + (4/5)^2`
= `(9 + 16 )/(25)`
= `(25)/(25)`
= 1
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠P are acute angles such that tan A = tan P, then show that ∠A = ∠P.
If A = B = 60°, verify that cos (A − B) = cos A cos B + sin A sin B
If A = B = 60°. Verify `tan (A - B) = (tan A - tan B)/(1 + tan tan B)`
If Sec 4A = cosec (A – 20°) where 4A is an acute angle, find the value of A.
Evaluate:
sin600 cos300 + cos600 sin300
If A = 600 and B = 300, verify that:
cos (A + B) = cos A cos B - sin A sin B
From the following figure, find the values of
(i) cos A
(ii) cosec A
(iii) tan2A - sec2A
(iv) sin C
(v) sec C
(vi) cot2 C - ` 1 / sin^2 "c"`
If cosec θ = `sqrt5`, find the value of:
- 2 - sin2 θ - cos2 θ
- 2 + `1/sin^2"θ" – cos^2"θ"/sin^2"θ"`
In the given figure; ∠C = 90o and D is mid-point of AC.
Find :
(i) `(tan∠CAB)/ (tan∠CDB)` (ii) `(tan∠ABC)/ (tan∠DBC)`
If 5 cos = 6 sin ; evaluate:
(i) tan θ
(ii) `(12 sin θ – 3 cos θ)/(12 sin θ + 3 cos θ)`