Advertisements
Advertisements
प्रश्न
In the given figure, AC = 13cm, BC = 12 cm and ∠B = 90°. Without using tables, find the values of: `("cos A" - "sin A")/("cos A" + "sin A")`
उत्तर
ΔABC is a right-angled triangle.
∴ AC2 = AB2 + BC2
⇒ AB2
= AC2 - BC2
= 132 - 122
= 169 - 144
= 25
⇒ AB = 5cm
sin A = `"BC"/"AC" = (12)/(13)`
cos A = `"AB"/"AC" = (5)/(13)`
`("cos A" - "sin A")/("cos A" + "sin A")`
= `(5/13 - 12/13)/(5/13 + 12/13)`
= `(-(7)/(13))/((17)/(13)`
= `-(7)/(13) xx (13)/(17)`
= `-(7)/(17)`.
APPEARS IN
संबंधित प्रश्न
If sin θ = cos (θ – 45°), where θ – 45° are acute angles, find the degree measure of θ
If sin A = `9/41` find all the values of cos A and tan A
If cot θ = `3/4` , show that `sqrt("sec θ - cosecθ"/"secθ + cosecθ" ) = 1/ sqrt(7)`
If A = 300 , verify that:
(ii) cos 2A = `(1- tan^2A)/(1+tan^2A)`
If 3x = cosecθ = and `3/x= cottheta` find the value of 3`(x^2-1/x^2)`.
Use the given figure to find :
(i) sin xo
(ii) cos yo
(iii) 3 tan xo - 2 sin yo + 4 cos yo.
In the given figure, triangle ABC is right-angled at B. D is the foot of the perpendicular from B to AC. Given that BC = 3 cm and AB = 4 cm.
find :
- tan ∠DBC
- sin ∠DBA
In triangle ABC; ∠ABC = 90°, ∠CAB = x°, tan x° = `(3)/(4)` and BC = 15 cm. Find the measures of AB and AC.
In triangle ABC, ∠B = 90° and tan A = 0.75. If AC = 30 cm, find the lengths of AB and BC.
In ΔABC, ∠B = 90°. If AB = 12units and BC = 5units, find: sinA