Advertisements
Advertisements
प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
उत्तर
Consider ΔABC, where ∠A = 90°
tan θ = `"Perpendicular"/"Basse" = "AB"/"AC" = 1 = (1)/(1)`
By Pythagoras theorem,
BC2
= AB2 + AC2
= 12 + 12
= 2
⇒ BC = `sqrt(2)`
Now,
cot θ = `(1)/"tan θ"` = 1
sin θ = `"AB"/"BC" = (1)/sqrt(2)`
∴ 5cot2θ + sin2θ - 1
= `5 xx (1)^2 + (1/sqrt(2))^2 - 1`
= `5 + (1)/(2) - 1`
= `4 + (1)/(2)`
= `(9)/(2)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 4sinθ = `sqrt(13)`, find the value of `(4sinθ - 3cosθ)/(2sinθ + 6cosθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`