Advertisements
Advertisements
प्रश्न
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
उत्तर
3 tanθ = 4
⇒ tanθ = `(4)/(3) = "Perpendicular"/"Base"`
Hypotenuse
= `sqrt(("Perpendicular")^2 + ("Base")^2`
= `sqrt((4)^2 + (3)^2`
= `sqrt(16 + 9)`
= `sqrt(25)`
= 5
secθ = `"Hypotenuse"/"Base" = (5)/(3)`
cosecθ = `"Hypotenuse"/"Perpendicular" = (5)/(4)`
To prove: `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.
`sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ))`
= `(sqrt(5/3 - 5/4))/(sqrt(5/3 + 5/4)`
= `(sqrt(20 - 15)/12)/(sqrt(20 + 15)/12)`
= `(sqrt(5/12))/(sqrt(35/12)`
= `sqrt(5)/sqrt(12) xx sqrt(12)/(sqrt(35)`
= `sqrt(5)/sqrt(12) xx sqrt(12)/(sqrt(5) xx sqrt(7))`
= `(1)/sqrt(7)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"TSQ")/("tan"∠"PRQ")`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`