Advertisements
Advertisements
प्रश्न
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
उत्तर
cosecθ = `1(9)/(20) = (29)/(20)`
sinθ = `(1)/(cosecθ) = (20)/(29) = "Perpendicular"/"Hypotenuse"`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
= `sqrt((29)^2 - (20)^2`
= `sqrt(841 - 400)`
= `sqrt(441)`
= 21
cosθ = `"Base"/"Hypotenuse" = (21)/(29)`
To show: `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
`(1 - sinθ + cosθ)/(1 + sinθ + cosθ)`
= `(1 - 20/29 + 21/29)/(1 + 20/29 + 21/29)`
= `(29 - 20 + 21)/(29 + 20 + 21)`
= `(30)/(70)`
= `(3)/(7)`.
APPEARS IN
संबंधित प्रश्न
In the given figure, AD is perpendicular to BC. Find: 5 cos x
In the given figure, AD is perpendicular to BC. Find:
`(3)/("sin" x) + (4)/("cos" y) - 4 "tan" y`
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 24cosθ = 7 sinθ, find sinθ + cosθ.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If 12cosecθ = 13, find the value of `(sin^2θ - cos^2θ) /(2sinθ cosθ) xx (1)/tan^2θ`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.