Advertisements
Advertisements
Question
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
Solution
cosecθ = `1(9)/(20) = (29)/(20)`
sinθ = `(1)/(cosecθ) = (20)/(29) = "Perpendicular"/"Hypotenuse"`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicular")^2`
= `sqrt((29)^2 - (20)^2`
= `sqrt(841 - 400)`
= `sqrt(441)`
= 21
cosθ = `"Base"/"Hypotenuse" = (21)/(29)`
To show: `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
`(1 - sinθ + cosθ)/(1 + sinθ + cosθ)`
= `(1 - 20/29 + 21/29)/(1 + 20/29 + 21/29)`
= `(29 - 20 + 21)/(29 + 20 + 21)`
= `(30)/(70)`
= `(3)/(7)`.
APPEARS IN
RELATED QUESTIONS
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cotθ = `(1)/sqrt(3)`, show that `(1 - cos^2θ)/(2 - sin^2θ) = (3)/(5)`
If 12 cotθ = 13, find the value of `(2sinθ cosθ)/(cos^2θ - sin^2θ)`.
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
If tan θ = `"m"/"n"`, show that `"m sin θ - n cos θ"/"m sinθ + n cos θ" = ("m"^2 - "n"^2)/("m"^2 + "n"^2)`