Advertisements
Advertisements
Question
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
Solution
sinθ = `(3)/(4)`
`"Perpendicular"/"Hypotenuse" = (3)/(4)`
Base
= `sqrt(("Hypotenuse")^2 - ("Perpendicuar")^2`
= `sqrt(16 - 9)`
= `sqrt(7)`
cosecθ = `(4)/(3)`
cotθ = `"Base"/"Perpendicular" = sqrt(7)/(3)`
secθ = `"Hypotenuse"/"Base" = (4)/sqrt(7)`
Tp prove `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`
`sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)`
= `sqrt(((4/3)^2 - (sqrt(7)/3)^2)/((4/sqrt(7))^2 - 1)`
= `sqrt((16 /9 - 7/9)/(16/7 - 1)`
= `sqrt(((16 - 7)/9)/((16 - 7)/7)`
= `sqrt((9/9)/(9/7)`
= `sqrt((1)/(9/7)`
= `sqrt(7/9)`
= `sqrt(7)/(3)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 15 tan y
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If 35 sec θ = 37, find the value of sin θ - sin θ tan θ.
If b tanθ = a, find the values of `(cosθ + sinθ)/(cosθ - sinθ)`.
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.