Advertisements
Advertisements
Question
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
Solution
secA = `(17)/(8)`
⇒ cos A = `(8)/(17) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((17)^2 - (8)^2`
= `sqrt(289 - 64)`
= `sqrt(225)`
= 5
sin A = `"Perpendicular"/"Hypotenuse" = (15)/(17)`
tan A = `"Perpendicular"/"Base" = (15)/(8)`
To prove: `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
L.H.S. = `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)`
= `(3 - 4(15/17)^2)/(4(8/17)^2 - 3)`
= `(3 - 900/289)/(256/289 - 3)`
= `((867 - 900)/289)/((256 - 867)/289)`
= `(-33)/(-611)`
= `(33)/(611)`
R.H.S. = `(3 - tan^2"A")/(1 - 3tan^2"A")`
= `(3 - (15/8)^2)/(1 -3(15/8)^2)`
= `(3 - 225/64)/(1 - 675/64)`
= `((192 - 225)/64)/((64 - 675)/64)`
= `(-33)/(-611)`
= `(33)/(611)`.
APPEARS IN
RELATED QUESTIONS
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 3 - 2 cos ∠BAC + 3 cot ∠BCD
If 4 sinθ = 3 cosθ, find tan2θ + cot2θ
If 4 sinθ = 3 cosθ, find `(6sinθ - 2cosθ )/(6sinθ + 2cosθ )`
If 8tanA = 15, find sinA - cosA.
If 3cosθ - 4sinθ = 2cosθ + sinθ, find tanθ.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If sinθ = `(3)/(4)`, prove that `sqrt(("cosec"^2θ - cot^2θ)/(sec^2θ - 1)) = sqrt(7)/(3)`.
If 3 tanθ = 4, prove that `sqrt(secθ - "cosec"θ)/(sqrt(secθ - "cosec"θ)) = (1)/sqrt(7)`.