Advertisements
Advertisements
प्रश्न
If secA = `(17)/(8)`, verify that `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
उत्तर
secA = `(17)/(8)`
⇒ cos A = `(8)/(17) = "Base"/"Hypotenuse"`
Perpendicular
= `sqrt(("Hypotenuse")^2 - ("Base")^2`
= `sqrt((17)^2 - (8)^2`
= `sqrt(289 - 64)`
= `sqrt(225)`
= 5
sin A = `"Perpendicular"/"Hypotenuse" = (15)/(17)`
tan A = `"Perpendicular"/"Base" = (15)/(8)`
To prove: `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)= (3 - tan^2"A")/(1 - 3tan^2"A")`
L.H.S. = `(3 - 4sin^2 "A")/(4 cos^2 "A" - 3)`
= `(3 - 4(15/17)^2)/(4(8/17)^2 - 3)`
= `(3 - 900/289)/(256/289 - 3)`
= `((867 - 900)/289)/((256 - 867)/289)`
= `(-33)/(-611)`
= `(33)/(611)`
R.H.S. = `(3 - tan^2"A")/(1 - 3tan^2"A")`
= `(3 - (15/8)^2)/(1 -3(15/8)^2)`
= `(3 - 225/64)/(1 - 675/64)`
= `((192 - 225)/64)/((64 - 675)/64)`
= `(-33)/(-611)`
= `(33)/(611)`.
APPEARS IN
संबंधित प्रश्न
In tan θ = 1, find the value of 5cot2θ + sin2θ - 1.
In the given figure, ∠Q = 90°, PS is a median om QR from P, and RT divides PQ in the ratio 1 : 2. Find: `("tan" ∠"PSQ")/("tan"∠"PRQ")`
In the given figure, AD is perpendicular to BC. Find: 5 cos x - 12 sin y + tan x
In a right-angled triangle ABC, ∠B = 90°, BD = 3, DC = 4, and AC = 13. A point D is inside the triangle such as ∠BDC = 90°.
Find the values of 2 tan ∠BAC - sin ∠BCD
If 5cosθ = 3, find the value of `(4cosθ - sinθ)/(2cosθ + sinθ)`
If 4sinθ = `sqrt(13)`, find the value of 4sin3θ - 3sinθ
If 5tanθ = 12, find the value of `(2sinθ - 3cosθ)/(4sinθ - 9cosθ)`.
If cosecθ = `1(9)/(20)`, show that `(1 - sinθ + cosθ)/(1 + sinθ + cosθ) = (3)/(7)`
If a cotθ = b, prove that `("a"sinθ - "b"cosθ)/("a"sinθ + "b"cosθ) = ("a"^2 - "b"^2)/("a"^2 + "b"^2)`
If secA = `(5)/(4)`, cerify that `(3sin"A" - 4sin^3"A")/(4cos^3"A" - 3cos"A") = (3tan"A" - tan^3"A")/(1 - 3tan^2"A")`.